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Abstract Inhibition of the protein chaperone Hsp90α is a
promising approach for cancer therapy. In this work, a
molecular modeling study combining pharmacophore model,
molecular docking and three-dimensional quantitative
structure-activity relationships (3D-QSAR) was performed
to investigate a series of pyrazole/isoxazole scaffold inhib-
itors of human Hsp90α. The pharmacophore model can
provide the essential features required for the biological
activities of the inhibitors. The molecular docking study can
give insight into the binding mode between Hsp90α and its
inhibitors. 3D-QSAR based on CoMFA and CoMSIA
models were performed from three different strategies for
conformational selection and alignment. The receptor-based
models gave the most statistically significant results with
cross-validated q2 values of 0.782 and 0.829 and r2 values of
0.909 and 0.968, for CoMFA and CoMSIA respectively.
Furthermore, the 3D contour maps superimposed within the
binding site of Hsp90α could help to understand the pivotal
interaction and the structural requirements for potent Hsp90α

inhibitors. The results show 4-position of pyrazole/isoxazole
ring requires bulky and hydrophobic groups, and bulky and
electron repulsion substituent of 5-amides is favorable for
enhancing activity. This study will be helpful for the rational
design of new potent Hsp90α inhibitors.
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Introduction

Heat shock protein 90 (Hsp90) belongs to the family of
molecular chaperones, regulating the conformational matura-
tion, stability and function of many important “client”
proteins such as kinases, steroid hormone receptors, and
transcription factors involved in cancer [1, 2]. The inhibition
of Hsp90 can deliver a powerful anti-cancer effect through
the combinatorial depletion of multiple oncogenic client
proteins and the consequent modulation of all the hallmark
traits of cancer cells. There exists two isoforms of Hsp90, i.e.,
α and β isoforms. Due to the discovery and characterization
of two natural product inhibitors geldanamycin and radicicol
[3], Hsp90α has emerged as an exciting target for the
development of cancer chemotherapeutics [4]. Subsequently,
based on the structural features of the N-terminal binding of
ATP to Hsp90α, several small-molecule inhibitors were
designed and synthesized, mainly including the purine and
pyrazole/isoxazole scaffold [5–8].

Nowadays, molecular modeling techniques have been
emerged as an important tool for drug design as they can
provide quantitative structure-activity relationships of bio-
active inhibitors and the information about target-drug
interaction [9–15]. Many successful applications in medici-
nal chemistry can demonstrate the importance of these
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methods in drug discovery and development [16–19]. As
Hsp90α is an attractive target, the urgent need for novel anti-
cancer agents has impelled to understand the structural
requisites of promising inhibitors at the molecular level.
Therefore, molecular modeling study and in silico design of
small molecules inhibiting Hsp90 has aroused great interests
[20–22].

However, understanding the impact of molecular flexibility
of inhibitors remains an important problem in computer-aided
drug design, as it can help assess the influence of bioactive
conformation and pharmacophore features on the inhibition
process. In order to consider the influence of the flexibility of
the inhibitors during its interaction with the targets, molecular
modeling techniques such as pharmacophore modeling,
flexible docking and molecular dynamics simulation have
been applied in the development of drug design [15, 20, 22].
In this study, we aimed to perform a combined molecular
modeling study using pharmacophore modeling, molecular
docking and 3D-QSAR on a series of pyrazole/isoxazole
scaffold Hsp90α inhibitors from both ligand-based and
structure-based methods. Considering the structural flexibility
and diversity of the studied inhibitors, we proposed different
strategies for conformational selection and alignment from
pharmacophore and docking to develop 3D-QSAR models.
The results could provide the information about the interac-
tion between inhibitors and human Hsp90α, and gain insights
to the structural requirements for inhibitory activity.

Materials and methods

Data set and molecule preparation

In this study, a series of 94 molecules as Hsp90α inhibitors
were taken from the literatures [23–26]. The in vitro
inhibitory activities (IC50, in units of μM) were transformed
to negative logarithmic units marked as pIC50 used as
dependent variables in the CoMFA and CoMSIA analyses
and pharmacophore modeling. The 3D structures were
sketched in SYBYL 6.9 [27]. Partial atomic charges were
calculated using Gasteiger–Hückel method, and energy
minimization was performed using the Tripos force field
with convergence criterion of 0.01 kcal mol−1. Selection of
the training set and the test set was done by considering the
similar structural diversity and range of bioactivities of both
sets. The data set was divided into a training set of 74
molecules and a test set of the remaining 20 molecules
(Table S1 in Supporting information).

Generation of pharmacophore model

The pharmacophore model for Hsp90α inhibitors was
generated using Phase [28]. A pIC50 value of 7.0 was

chosen as the threshold for defining an active molecule by
considering the activity range. Conformations for the
studied molecules were generated by torsional search
method with distance-dependent dielectric solvation treat-
ment and OPLS-2001 force field. Five pharmacophore
features were defined, namely hydrogen bond acceptor (A),
hydrogen bond donor (D), hydrophobic group (H), posi-
tively charged group (P), and aromatic ring (R). Then
common pharmacophore hypotheses (CPH) was examined
using a survival scoring function to yield the best alignment
of the active molecules. The resulting pharmacophore with
high-ranking scores were validated by a partial least squares
(PLS) regression-based cross-validation [29].

Molecular docking

We carried out the molecular docking simulation using
Glide program [30]. The crystal structure of human Hsp90α
N-terminal domain in complexes with ligand (corresponding
to molecule 2), was obtained from the Protein Data Bank
(PDB code: 2BSM). The protein structure was prepared in
Maestro [31]. Water molecules were removed from the
complex except for three structurally conserved and highly
ordered water molecules involved in the network with
Asp93 at the ATP binding site, which are determined in all
nine X-ray crystal structures of Hsp90α complexed with
this pyrazole/isoxazole scaffold inhibitors (PDB codes:
2BT0, 2BSM, 2BYH, 2BYI, 2CCS, 2CCU, 2CCT, 2VCI
and 2VCJ). Both protein and ligand were assigned partial
charges using the OPLS-2005 force field. Then energy
minimization was carried out to relax the structure [32].
The co-crystal ligand was used to determine the location
of a docking grid box and was then removed prior to grid
generation in the next step. After docking calculation, at
most ten poses per ligand were generated. The best docked
pose was chosen using Glide XP (extra precision) score
[33, 34].

3D-QSAR models derived from three different strategies

Our CoMFA and CoMSIA analyses were performed using
SYBYL 6.9. As the molecular conformation and alignment
of molecules are two sensitive input parameters affecting
the 3D-QSAR models, we used the following three
different strategies to obtain bioactive conformations and
generate alignments in this work.

Lowest-energy conformation and common scaffold
based alignment (CBA)

The lowest-energy conformers represent the global mini-
mum of the ligand, and may be the bioactive conformations
[35]. To get a reasonable energy-lowest conformation for
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each molecule, the conformational search was carried out
using the multisearch routine in SYBYL 6.9. The most
active molecule 62 was used as a template to align the
remaining molecules by atom-by-atom fits (Fig. 1).

Pharmacophore-based conformational generation
and alignment (PBA)

Pharmacophore model constitutes a useful tool to guide the
alignment of flexible and diverse molecules in CoMFA and
CoMSIA studies [36–39]. In our study, structurally different
molecules were superimposed on the best pharmacophore
model according to the same 3D chemical features rather
than atom-by-atom comparison. The conformation of each
molecule was selected based on the fitness score between the
pharmacophoric features and the corresponding functional
groups presented in the molecule.

Docking-based conformational generation and alignment
(DBA)

The docking-based QSAR study has the advantages by
taking features of the binding pocket of receptor to get the
active conformation [40–44]. This method represents
ligand-receptor interactions avoiding the bias that can be
introduced by relying on ligand-based alignment. Here we
derived this information directly from our Glide XP
docking study.

The final aligned conformations of all molecules from
three strategies were exported for 3D-QSAR modeling. The
aligned training set molecules were placed in a 3D grid box
ensuring the entire set included. The CoMFA [45] steric
and electrostatic field energies between the probe and
molecule at each lattice intersection were calculated with a
grid step size of 2 Å using sp3 C+ as probe atom, which

were automatically generated by the CoMFA-STD method
with default energy of 30 kcal mol-1. And in the case of
CoMSIA models, steric, electrostatic, hydrophobic, hydro-
gen bond donor and hydrogen bond acceptor fields, were
derived according to the method developed by Klebe et al.
[46] with the same lattice box and probe atom used in the
CoMFA calculations.

Then the performance of models was calculated by the
leave-one-out (LOO) cross-validation using partial least
squares (PLS) method [29, 47, 48]. The optimal number of
components (ONC) obtained, which is equal to the number
yielding the highest cross-validated coefficient q2, was used
to generate the final regression models by a non-cross-
validated PLS analysis. And the conventional correlation
coefficient r2 and its standard error of estimation (SEE)
were subsequently computed for the final PLS models. In
addition, the boot strapping analysis [48] was carried out
100 times to validate each model. CoMFA and CoMSIA
coefficient maps were generated by interpolation of the
pairwise products between the PLS coefficients and the
standard deviations of the corresponding CoMFA or
CoMSIA descriptor values. The activities of the test set
molecules were predicted to evaluate the predictive
power of the built models with the correlation coefficient
r 2

pred.

Results and discussion

Pharmacophore modeling

We obtained an AADRR pharmacophore model, including
two hydrogen bond acceptors (A), one hydrogen bond
donor (D) and two aromatic rings (R) features. Fig. 2a
shows the pharmacophore hypotheses with the active
molecules in the training and test sets aligned. It seemed
that the alignment was very good when the high bioactive
conformations were automatically aligned to the pharma-
cophore model, especially for the reference molecule 9
exactly matching with a fitness of three. For those
molecules with poor inhibitory activity, they can only
produce relatively good fits with three or two features.
However, for the conformations not matching well, it
should be manually adjusted for the alignment of further
CoMFA and CoMSIA studies [36]. From the chemical
intuition, the two common core structures, 3-resorcinol and
pyrazole/isoxazole ring of these molecules should adopt
similar orientation. Thus, in the adjustment, the R and A
features corresponding to the pyrazole/isoxazole ring and
the para-position O of 3-resorcinol were adopted as the
criteria for all molecules superimposed in the similar space
orientations. Then QSAR models were built based on this
pharmacophore model.

Fig. 1 Alignment of all 94 molecules using the lowest-energy
conformers by atom fit
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Validation of pharmacophore model

Twenty molecules in the test set were used to validate the
predictive ability of this hypothesis. The PLS parameters
are shown in Table 1. The observed and predicted activities
obtained from the model are listed in Table S2. And visual
representation of atom-based QSAR model is illustrated in
Fig. 2b, where blue cubes represent regions of favorable
interactions for activity, and red cubes are on the contrary.

Interpretation of the pharmacophore by superimposing
with cocrystal complex

Pharmacophores located in the proximity, may correspond to
the key residues of the receptor. As the initial conformations
were derived from the crystal structures, we put the common
hypothesis aligned conformations of active molecules 2, 62
and 9 into the binding pocket of cocrystallized Hsp90α
complex. We compared the pharmacophore model with the

experimental intermolecular interactions. Figure 2c shows
the overlay of these structures. A low RMSD value of 0.343
Å was determined between the conformation and the cocrystal-
lized structure of molecule 2. Particularly, the NH and CO
groups in the 5-amides moiety superimposed the H-bond donor
(N-H) and acceptor (C=O) features in the active molecules
closely correspond to that of the residues (Gly97, Lys58).

Binding mode analysis by docking

The extra precision (XP) glide docking was used to predict
binding modes and rank the docked poses. Firstly, we
redocked the cocrystal ligand with a low RMSD of
0.493 Å. Then all 94 molecules were docked by the same
method. The docking sores are listed in Table S2. It can be
seen that most of the molecules bind to Hsp90 well, but
several with low scoring, such as molecules 32, 34, 79 and
94. This ascribes to the bulky and complex substituents of
side chains, which are unfavorable to binding affinity.

Fig. 2 (a) The alignment of
active molecules by Phase
pharmacophore hypothesis.
H-bond acceptor (A): light red
sphere with arrows;
H-bond donor (D): light blue
sphere with arrow; Atomatc ring
(R): orange torus in the plane of
the ring. (b) Visual representa-
tion of atom-based Phase QSAR
with all atom classes, aligned
with molecule 62. Blue cubes
are favorable regions for activi-
ty, and red cubes indicate unfa-
vorable regions. (c) Overlay of
molecules 2 (green ball stick),
62 (magenta ball stick), 9 (blue
ball stick) aligned with AADRR
pharmacophore model. Curved
line represents second structure
of Hsp90α
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The binding modes of Hsp90α inhibitors were analyzed by
molecules with different 4-position side chain based on the
pyrazole and isoxazole scaffords, including the aryl, amino,
carboxamide pyrazoles and aryl isoxazoles. In Fig. 3a, the
docking results indicate that all molecules show similar
binding poses in the ATP active site of human Hsp90α N-
terminus. In Fig. 3b and c, it is observed that the identical
pyrazole and isoxazole nitrogen atoms form a network of
hydrogen bonds with the active site amino acids Thr184 and
Gly97, together with water molecules within the binding
pocket. And the 3-resorcinol moiety is positioned in the
active site region, reported originally occupied by the
adenine ring [49], which forms two H-bonds, viz one directly
with Asp93 and one with Ser52 mediated by waters. The 5-
amide carbonyl moiety interacts with Lys58 side chain and
amide moiety contacts the backbone oxygen atom of Gly97,
while the ethyl terminal take van der Waals contacts with
Ile96. Hydrophobic interactions are also involved, including

those residues which are located on the perimeter of the
cavity. The chlorine substitutive position on resorcinol
pointed directly toward the hydrophobic cavity formed by
Leu48, Phe138, and Val150 (Fig. 3b). Replacement of the
chlorine of the resorcinol ring by alkyl group results in an
additional hydrophobic interaction with Leu107 in the
flexible lipophilic pocket (Fig. 3c).

CoMFA and CoMSIA statistical results

The CoMFA and CoMSIA analyses were performed
corresponding to the three strategies mentioned earlier.
The statistical parameters of all the models are summarized
in Table 2. The DBA strategy built the best CoMFA (q2=
0.782, ONC=5 and r2=0.923) and CoMSIA (q2=0.829,
ONC=6 and r2=0.968) model. Moreover, it gave the
bootstrapped r2 boot of 0.935±0.018, 0.979±0.007 and
SEEboot of 0.304±0.160, 0.175±0.101 for CoMFA and

Factors SD R-squared F P Stability RMSE Q-squared Pearson-R

1 0.6147 0.7301 192.1 7.05E-22 0.9859 0.5052 0.6745 0.8432

2 0.4721 0.8431 188.0 7.08E-29 0.9193 0.5090 0.6696 0.8501

3 0.3471 0.9164 252.1 4.23E-37 0.8607 0.3891 0.8069 0.9114

4 0.3036 0.9370 252.7 5.06E-40 0.8572 0.3703 0.8251 0.9203

5 0.2629 0.9534 274.3 3.46E-43 0.8366 0.3863 0.8097 0.9197

Table 1 Summary of PLS
analysis results for the AADRR
pharmacophore model

Fig. 3 Binding mode of
inhibitors in Hsp90 active site:
(a) Conformations of all docked
molecules (b) Redocked
molecule 2 (magenta) with the
cocrystal ligand (green) (c) the
most active molecule 62 (green).
Red balls represent waters, and
H-bond interactions are
blue dots
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CoMSIA, respectively, which suggested that a good
internal consistency existed within the training dataset.

For the three modeling approaches, the corresponding
field contributions are listed in Table 2. It is observed that
the electrostatic contributions are nearly twice the steric
contributions in both CoMFA and CoMSIA results for the
CBA and PBA. The steric and electrostatic contributions
are similar in the CoMFA result and the electrostatic
contributions are nearly twice the steric contributions in the
CoMSIA for the DBA model. It is also observed that the
hydrophobic contributions are the largest part in the CoMSIA
models. The H-acceptor field has a similar contribution as
does the H-donor field in the CoMSIA models. And the steric
field seems to be weakened among the five terms. It is
consistent with the significant hydrophobic effect and water
bridge network in our previous docking study.

Validation of CoMFA and CoMSIA models

The predicted results for the test set are listed in Table 2.
Both the DBA CoMFA and CoMSIA models give the

highest r2pred with the lowest SEEts. The plot of the
experimental versus the predicted pIC50 values for the
training set and the test set is shown in Fig. 4, with ±1.2
and ±1.5 of triple values of standard error of estimation,
respectively. The CoMSIA model gives the better relation-
ship between the predictive r2 with less residual values of
the test set compared to the CoMFA model. The high
predictive power of CoMFA and CoMSIA training models
suggest that these models possess a high accommodating
capacity and applicability in the development of new
Hsp90α inhibitors. Since the DBA strategy shows the most
significant statistic and prediction results, our discussion
was focused on DBA models and their three-dimensional
colored contour maps.

Interpretation of receptor-based CoMFA and CoMSIA
contour maps

The steric and electrostatic contour maps of the docking-guided
CoMFA and CoMSIAmodels are shown in Fig. 5a and b. The
hydrophobic, H-bond donor and H-bond acceptor contour

Table 2 Summary of PLS analysis results for CoMFA and CoMSIA models

PLS CoMFA CoMSIA

CBA PBA DBA CBA PBA DBA

q2 a 0.767 0.77 0.775 0.769 0.784 0.829

ONC b 3 4 4 4 6 6

r2tr
c 0.906 0.909 0.909 0.939 0.968 0.968

SEEtr
d 0.368 0.365 0.363 0.297 0.221 0.219

F e 223.899 169.321 173.067 267.794 328.834 335.966

r2boot
f 0.931±0.017 0.941±0.017 0.935±0.018 0.959±0.012 0.975±0.008 0.979±0.007

SEEboot
g 0.312±0.153 0.292±0.149 0.304±0.160 0.241±0.121 0.190±0.103 0.175±0.101

r2pred
h 0.856 0.709 0.837 0.856 0.809 0.871

SEEts
i 0.413 0.500 0.423 0.409 0.681 0.406

field contribution j

S 0.381 0.342 0.562 0.101 0.138 0.126

E 0.619 0.658 0.438 0.283 0.239 0.252

H — — — 0.254 0.262 0.288

D — — — 0.187 0.178 0.176

A — — — 0.175 0.182 0.159

a Cross-validated correlation coefficient after leave-one-out procedure
b Optimal number of principal components
c Non-cross-validated correlation coefficient
d Standard error of estimate
e Ratio of r2 explained to unexplained=r2 /(1−r2 )
f Average of correlation coefficient for 100 samplings using the bootstrapped procedure
g Average standard error of estimate for 100 samplings using the bootstrapped procedure
h Predicted correlation coefficient for the test set
i Standard error of estimate for the test set
j Abbreviations: S (steric); E (electrostatic); H (hydrophobic); D (H-bond donor); A (H-bond acceptor)
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maps of CoMSIA are shown in Fig. 5c and d. Molecule 62
docked in the active site is used for further analysis.

In Fig. 5a and b, green contours represent bulky groups
increase activity, while yellow contours represent bulky
groups decrease activity for the steric field. Similarly blue
contours indicate regions where electropositive groups

increase activity, while red contours indicate regions where
electronegative groups increase activity for the electrostatic
field. For CoMFA steric field, two green and three yellow
regions are recognized in the contour (Fig. 5a). Green
contours appear near the 5-amide group and the para
substituent of 4-position benzene ring, and they are also

Fig. 4 Observed versus predicted pIC50 activity values for the training and test set of DBA models, where black dash dots represent triple values
of SEE for training set, and red dots represent for test set

Fig. 5 CoMFA and CoMSIA
STDEV*COEFF contour maps
based on molecule 62 in
the active site of Hsp90.
CoMFA: (a) Steric and
electrostatic fields. CoMSIA:
(b) Steric and electrostatic
fields. (c) Hydrophobic field.
(d) H-bond acceptor and
donor fields
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found in the contour map of CoMSIA (Fig. 5b). This
indicates that bulky groups in both positions can increase
the activity. The observation correlates with the experimen-
tal determinations. For example, molecules 46, 47 and 2 are
more and more active after altering the R group from H to
Ethyl. The para-substituted molecules (5-11, 63-71, and
75-94) show higher activity compared with those meta
substituents (12-20, 72-74). The residue Val136 is located
to the outspread direction of the para position substituent,
while Lys58 is close to the meta position of the binding
pocket. Hence, there is not enough space for the bulky
group of the meta position owing to the bad contact with
Lys58, but the bulky group at para position is favorable for
the interaction with Val136. In addition, the 4-amino
analogues (molecules 21-39) can increase activity by the
bulkier para N-substituted group. Two yellow contours
are observed around both sides of the meta-position of 4-
position benzene ring. This suggests meta-position substi-
tution is unfavorable for the activity. Another yellow
region near the isoxazole ring is also steric-unfavorable.
There is only a large yellow contour around the meta-
position of 4-position benzene ring in the CoMSIA steric
contour map.

For the CoMFA electrostatic contour map, the blue
contour around the 4-position substituent demonstrates the
positive-favorable property for inhibitory activity. This can
be proved by the fact that molecule 27 is most potent
among molecules 22-26, 28, 29, while molecule 71 is of
higher potency than molecules 15 and 17. Molecules 4, 50-
61 with 4-carboxamides have lower activities than those
with 4-phenyl rings. The red negative-favorable region is
mainly on the carbonyl O of the 5-amides. These are also
observed from the CoMSIA electrostatic contour map.
Besides, a large blue contour placed between two red
contours appears around the substituent -CH2NEt2 of 4-
position phenyl group, which suggests electrostatic contri-
butions have little effect to vary activity. In the CoMFA
model, the contribution of electrostatic field is equal to that
of steric field, but in the CoMSIA, the contribution of the
electrostatic field is twice as much as the steric. As CoMFA
does not have explicit hydrophobic and H-bond descriptors
in the CoMSIA, which are assumed to be implicitly treated
in the CoMFA steric and electrostatic fields, respectively,
the electrostatic field component becomes higher in the
CoMSIA.

In the CoMSIA hydrophobic contour (Fig. 5c), the white
regions are in proximity to the polar pyrazole/isoxazole
rings, 5-amides and 4-substitution moieties, which
represent hydrophobic-disfavored for the activity. The
yellow region overlaps the 4-phenyl group, which indicates
this position is hydrophobic-favorable for the activity.
Combining with the binding pocket, it can be seen that
there is a crucial network of hydrogen bonding interactions

involving the hydroxyl of 3-resorcinol and pyrazole/
isoxazole ring with Asp93, Thr184 and a cluster of
structurally conserved and highly ordered water molecules.
The 4-aryl group is pointing toward the solvent in a quite
open part of the binding site. The 5-amides group is close to
the protein with a number of potential interaction sites and
located in another solvent channel, which disfavors hydro-
phobicity. There is some but not large amounts of room
near the region of the positive N of 4-substituted groups,
which corresponds to the white region. The group at the
position should be a proper one fitting into the binding site,
not a large one.

As shown in H-bond donor and H-bond acceptor contour
maps of CoMSIA (Fig. 5d), the cyan region of the H-bond
donor favored, occurs over the 5-amides NH offered to
interact with residue Gly97, whereas a purple H-bond
donor disfavored contour occurs right closed to the two
magenta H-bond acceptor favorable regions oriented above
the C=O of 5-amides and between the C=O of 5-amides
and the N of isoxazole ring. The red regions around 2-
position hydroxyl of 3-resorcinol and the substituent -
CH2NEt2 of 4-position phenyl group are unfavorable to the
H-bond acceptor. The magenta contour with a small purple
contour appears near the -CH2NEt2 group of 4-position
phenyl, which is favorable to the H-bond acceptor. This
probably reflects the polar substituents at the position
providing potential H-bond acceptor for enhancing activity,
such as active molecules 3, 7-10 and 63-66. In summary,
the results of pharmacophore model, docking and 3D-
QSAR are consistent and complimentary with each other.
The detailed analyses as discussed above suggest important
structural requirements for inhibitory activity. (Fig. 6).

Fig. 6 Structural requirements for pyrazole/isoxazole based inhibitors
for Hsp90α
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Conclusions

In this study, we performed a combined molecular modeling
study on a series of pyrazole-/isoxazole-based Hsp90α
inhibitors by using pharmacophore model, molecular dock-
ing and 3D-QSAR. The obtained pharmacophore model
provided the essential features for the inhibiting activity of
these compounds. Molecular docking studies validated the
identified pharmacophore features and also revealed that all
the inhibitors showed similar binding mode with the key
amino acid residues Lys58, Asp93, Gly97, Thr184 at the
ATP binding site of human Hsp90α. Based on both ligand-
and receptor-guided active conformational selection and
alignment strategies derived from pharmacophore and
docking analyses, 3D-QSAR models for Hsp90 inhibitors
were developed. The results of receptor-based models
indicated important requirements of H-bond donor/acceptor
and hydrophobic groups. Substituent at 4-position is not
merely just for filling the cavity in the active site, but also
fulfills the electronic requirements. Bulkier electron-
donating substituents at 4-aryl that can not give further
interactions with important hydrophobic residues in the
active site of Hsp90 are unfavorable for the ligand binding.
Key H-bond donors and acceptors at 3-resorcinol and 5-
amide which can form hydrogen bonds with the close
residues increase the inhibitory activity. The obtained results
from this combined molecular modeling study could provide
useful information for the design of novel Hsp90α inhibitors
as potential anticancer agents.
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